Resolvent and spectrum of a nonselfadjoint differential operator in a Hilbert space
نویسندگان
چکیده
We consider a second order regular differential operator whose coefficients are nonselfadjoint bounded operators acting in a Hilbert space. An estimate for the resolvent and a bound for the spectrum are established. An operator is said to be stable if its spectrum lies in the right half-plane. By the obtained bounds, stability and instability conditions are established.
منابع مشابه
ON THE POINT SPECTRUM OF NONSELFADJOINT PERTURBED OPERATORS OF WIENER-HOPF TYPE Ig. Cialenco
In this paper there are obtained results on the finiteness of the point spectrum of some nonselfadjoint operators. In particular the operators of WienerHopf type acting in arbitrary Hilbert space, l2 and L2(R+) are considered. In the present paper there is examined the problem of finiteness of the point spectrum of some nonselfadjoint operators. The similar problems have been studied for differ...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملNorm estimates for resolvents of non-selfadjoint operators having Hilbert-Schmidt inverse ones
The paper is devoted to an invertible linear operator whose inverse is a Hilbert Schmidt operator and imaginary Hermitian component is bounded. Numerous regular differential and integro-differential operators satisfy these conditions. A sharp norm estimate for the resolvent of the considered operator is established. It gives us estimates for the semigroup and so-called Hirsch operator functions...
متن کاملSpectral Asymptotics for Schrödinger Operators with Periodic Point Interactions
Spectrum of the second-order differential operator with periodic point interactions in L2 R is investigated. Classes of unitary equivalent operators of this type are described. Spectral asymptotics for the whole family of periodic operators are calculated. It is proven that the first several terms in the asymptotics determine the class of equivalent operators uniquely. It is proven that the spe...
متن کامل